First, let's talk about the pink map one more time. What is actually being shown in that map is the temperature of the phot

Now, there's a subtlety here regarding contrast, because I never told you what the color actually represents in terms of temperature. If pink means any temperature between 0 and 4000 C, then no wonder the universe looks the same everywhere! To illustrate what I mean, I'm going to once again draw some of my own really high quality images. I have a gas stove in my apartment with 4 burners. When I turn those burners on, there are four hot spots on my stove. Let's assume the main part of the stove always stays at room temperature (70 degrees Fahrenheit or 21 C). Let's further assume that the temperature in the flame of my burners is 3500 F or 2500 C. I can represent this graphically in two different ways:


In the plot to the left, I've used a reasonable contrast, and we can clearly see the white that represents the room temperature part of the stove and the red that represents the hot part. But in the plot to the right, I've used such a big scale (or a small contrast), that the stove looks the same color, just like the map of the CMB.
Hopefully, you're now all asking the question, "so just how isotropic is the CMB?" since I can apparently make a plot that looks uniform just by changing the scale. The answer is that it is very isotropic, but not perfectly. The pink map is accurate up to 1 part in 1000. Basically, all the photons have the same temperature to within 0.1%. Which is pretty uniform. But, suppose we turned up the contrast, so that colors varied with that 0.1% (this would be analogous to switching from the right plot to the left). Now the CMB looks like this:

What about if we went even further, to a contrast of 1 part in 100,000 (this would be like looking for the difference between adding or subtracting a penny from 1,000 dollars)? Here is where the excitement really enters, but I'll talk about that in the next post (CMB plots courtesy of the WMAP homepage, as usual).

No comments:
Post a Comment